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7 Solutions of Linear Algebraic Equations
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7 Solutions of Linear Algebraic Equations

7.1 LU decomposition method

7.2 Exercises

7.1 LU decomposition method

e By using the finite element method, a standard discrete
system is obtained. The basic stiffness equations of the
discrete system are linear algebraic equations.

Ku=f

e In general, as the number of the linear algebraic equations
increasing, it is difficult to solve them manually and directly
through constructing the inverse matrix of the stiffness
matrix. . .

u=K7f

e This section will introduce a commonly used LU

decomposition method or triangular decomposition method,

also known as Gaussian elimination method, including the
forward elimination and back substitution procedures.

7.1 LU decomposition method

e Consider a set of linear algebraic equations, representing
the global stiffness equations in finite element method,
given by

Ku=f

where K is a nxn square matrix with known values,
representing the global stiffness matrix; u is a vector of
unknown parameters, representing the global displacement
vector; f is a vector with known values, representing the
global load vector.

1,
7.1 LU decomposition method \e/‘

e The matrix K is symmetric and positive definite, which
can be written as the product of a lower triangular matrix L
with unit diagonals and an upper triangular matrix U as
follows

LU decomposition,
K=LU triangular decomposition,
Gaussian elimination
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7.1 LU decomposition method

7.1 LU decomposition method

e The solution to the equations can now be obtained by
sequentially solving the pair of equations.

Ka=f Iy Ly=f + Ui=y

e In terms of the individual equations the solution is given by

y,=f i=1 Forward elimination
Ly =f i1
y,=1 —ZL"y,, i=2.3,...n
J
i, Back substitution
Uu=y

; ;]‘ i=n—-1Ln-2....1

e Based on the organization of Fig. 7.1, it is convenient to
consider the coefficient array of stiffness matrix K to be
divided into three parts

(1) Reduced zone: the region U jth eolumn active zone
which is fully reduced; — :
(2) Active zone: the region which Reduoed K
is currently being reduced; where L—> N
the jth column above the diagonal /™Y _ m———" ¢

active zone

and the jth row to the left of the
diagonal constitute the active zone;

Unreduced zone

(3) Unreduced zone: the region
which contains the original
unreduced coefficients.

Figure 7.1 Reduced, active, and
unreduced zones in LU decomposition

of stiffness matrix K. 8 c

7.1 LU decomposition method

7.1 LU decomposition method

e The coefficients in the decomposed matrices L and U can
be stored in the active zone, respectively, as shown in Fig.
7.2. Through the above processes, the stiffness matrix is
decomposed into two matrix parts.

e Figure 7.2 Matrices L and

e The algorithm for the LU decomposition of an nxn square
matrix can be deduced from Fig. 7.3 as follows

Step 1. Active zone. First row and column to principal diagonal.

Active zone
Ko Ko Kol fn=111 i i
Kz K2 Ka [~ E E E
Ks Ku Kwu i i

e Figure 7.3 LU decomposition of stiffness matrix K.

e First row and colum is activated as

K, |— ‘ U stored in active zone. U” :K”’ L“ =1
9 10
9 10
70 3
7.1 LU decomposition method 7.1 LU decomposition method \9@/’

e The algorithm for the LU decomposition of an nxn square
matrix can be deduced from Figs 7.3 as follows

Step 2. Active zone. Second row and column to principal diagonal. Use first row of K
to eliminate L21Un: The active zone uses only values of K from the active zone and
values of L and U which have already been computed in steps 1 and 2.
»/ Reduced zone
i Active zone

Un=Kn |

(2= Lol

e Figure 7.3 LU decomposition of stiffness matrix K.

e For each active zone j from 2 to n

LfKJl U =K L:LK—EL U
11’?~ | R V] M 7 R~ "'J
1

o The algorithm for the LU decomposition of an nxn square
matrix can be deduced from Figs 7.3 as follows

Step 3. Active zone. Third row and column to principal diagonal. Use first row to
climinate LyUii: Use second row of reduced terms to eliminate L3 (reduced
coeflicient K32).Reduce column 3 to reflect eliminations below diagonal.

chducrd zone
e Active zone

- |i\

Ln
Ln
Ln=Ky
Lu=(Kn-LalUn)/Ux

o Figure 7.3 LU decomposition of stiffness matrix K.

e For each active zone j from 2 to n

i-1
K =1 _ y
==t U, =K, L=g [Kﬂ Zlﬂtj
s U” J I i "

‘o

i-1
U,=K,-Y LU, i=23....j-1 2
-l
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7.1 LU decomposition method @] 7.1 LU decomposition method @]

e The algorithm for the LU decomposition of an nxn square
matrix can be deduced from Figs 7.3 as follows

Step 3. Active zone. Third row and column to principal diagonal. Use first row to
eliminate L3 Un: Use second row of reduced terms to eliminate L3202 (reduced
coefficient K32).Reduce column 3 to reflect eliminations below diagonal.

Redueed zone
Vo .
r Active zone

L
L
Ln=Kn/Un
La=(Kn=Lalln) /U

o Figure 7.3 LU decomposition of stiffness matrix K.

e Example 7.1 Based on the triangular decomposition of
stiffness matrix K, compute the solutions of displacements

in stiffness equations

Ku=f with K=

— N
(ST S |

e Firstly, the 3x3 stiffness matrix K is decomposed, as

. _ 1 -
o finally with ;=1 L_[ z WU, } shown in Table 7.1.
Ui ’ -1
Uﬂ:KﬁszmDm - Z Uy i=230j-10 14
me=l e 13 14
" & " ©
7.1 LU decomposition method N/ 7.1 LU decomposition method e /
e Table7.1LU decomposition K ‘ L v e Secondly, using the decomposed matrices L and U, the
of 3x3 stiffness matrix K. 5;"’12’ ’-I‘-’_ s Lu=4 oo . forward elimination and back substitution procedures will
242 ; } be implemented. Forward elimination
1|1 111*1 L2 > - J - L i=1 T T T T ‘\
Step2 1,_-]:;:0.5‘!:. =2;Un=4-05x2=3 Y —fn 1= | 1 42 1],
21 [t 42 ol : 0.5 1 315 :
U =K 24 3} 05 1 } 3 } yi=f-2 Ly, i=23...n I [025 05 1 31
1] 1 124 M~ NC__ /
. 1 i 202 15 ..} e ]
_ i1 . ) Step3. [.u=4=0.25: Un=1;Ln= 3 = 3 =0.5 . L _ _ ] 4 |
E »ZAL"LMJ' Un=2-05x1=15;Ln=1;Un=4-025x1-05x1.5=3 i=1 'l4f_j:_'fl_4 : |
B S ] | [ 1 421 , f=42 :
oK F Uy 122301 1} 0s 1 J 3Ls i=2, y=f- ZL1 =f- ZL %=2-05x4=0 | 1]
124 [o2s 05 1) L 3 = RIS
“Stepd. Check it
i i 1 42 1774 21 i=3, ‘1",=f,— L,,‘.l"=fs— Ls v, =1-025x4-05%x0=0
U;r =K;/ _ZL;:"DM; 05 1 3 1s[=2 4 2 ; o ; o
et 025 05 1 324 B %6
s e . >
7.1 LU decomposition method N 7.1 LU decomposition method N

e Secondly, using the decomposed matrices L and U, the
forward elimination and back substitution procedures will
be implemented.

Back substitution

4-Uui, +U 0, )774 2%0+1x0)=1 17

e The displacement solutions are obtained
a={d @ af={1 0 of
e According the below verification, these solutions are
completely reliable

4 2 1|[1 4
Ka=|2 4 210,=42;=f
1 2 4f|0 1

18
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