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 By using the finite element method, a standard discrete
system is obtained. The basic stiffness equations of the
discrete system are linear algebraic equations.

 In general, as the number of the linear algebraic equations
increasing, it is difficult to solve them manually and directly
through constructing the inverse matrix of the stiffness
matrix.

 This section will introduce a commonly used LU
decomposition method or triangular decomposition method,
also known as Gaussian elimination method, including the
forward elimination and back substitution procedures.

7.1 LU decomposition method
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 Consider a set of linear algebraic equations, representing
the global stiffness equations in finite element method,
given by

where K is a n×n square matrix with known values,
representing the global stiffness matrix; is a vector of
unknown parameters, representing the global displacement
vector; f is a vector with known values, representing the
global load vector.

7.1 LU decomposition method
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 The matrix K is symmetric and positive definite, which
can be written as the product of a lower triangular matrix L
with unit diagonals and an upper triangular matrix U as
follows

7.1 LU decomposition method

LU decomposition, 
triangular decomposition,
Gaussian elimination
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7.1 LU decomposition method

 The solution to the equations can now be obtained by 
sequentially solving the pair of equations.

 In terms of the individual equations the solution is given by

Forward elimination

Back substitution
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 Based on the organization of Fig. 7.1, it is convenient to
consider the coefficient array of stiffness matrix K to be
divided into three parts

7.1 LU decomposition method

(1) Reduced zone: the region 
which is fully reduced; 

(2) Active zone: the region which 
is currently being reduced; where 
the jth column above the diagonal 
and the jth row to the left of the 
diagonal constitute the active zone;

(3) Unreduced zone: the region 
which contains the original 
unreduced coefficients. 

 Figure 7.1 Reduced, active, and 

unreduced zones in LU decomposition 

of stiffness matrix K.
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 The coefficients in the decomposed matrices L and U can
be stored in the active zone, respectively, as shown in Fig.
7.2. Through the above processes, the stiffness matrix is
decomposed into two matrix parts.

7.1 LU decomposition method

 Figure 7.2 Matrices L and 

U stored in active zone.
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 The algorithm for the LU decomposition of an n×n square
matrix can be deduced from Fig. 7.3 as follows

7.1 LU decomposition method

 Figure 7.3 LU decomposition of stiffness matrix K.

 First row and colum is activated as
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 The algorithm for the LU decomposition of an n×n square
matrix can be deduced from Figs 7.3 as follows

7.1 LU decomposition method

 Figure 7.3 LU decomposition of stiffness matrix K.

 For each active zone j from 2 to n
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 The algorithm for the LU decomposition of an n×n square
matrix can be deduced from Figs 7.3 as follows

7.1 LU decomposition method

 Figure 7.3 LU decomposition of stiffness matrix K.

 For each active zone j from 2 to n
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 The algorithm for the LU decomposition of an n×n square
matrix can be deduced from Figs 7.3 as follows

7.1 LU decomposition method

 Figure 7.3 LU decomposition of stiffness matrix K.

 finally with Ljj=1
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 Example 7.1 Based on the triangular decomposition of

stiffness matrix K, compute the solutions of displacements

in stiffness equations

 Firstly, the 3×3 stiffness matrix K is decomposed, as

shown in Table 7.1.

7.1 LU decomposition method
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7.1 LU decomposition method

 Table 7.1 LU decomposition 

of 3×3 stiffness matrix K. 
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 Secondly, using the decomposed matrices L and U, the
forward elimination and back substitution procedures will
be implemented.

7.1 LU decomposition method

Forward elimination
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 Secondly, using the decomposed matrices L and U, the
forward elimination and back substitution procedures will
be implemented.

7.1 LU decomposition method

Back substitution
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 The displacement solutions are obtained

 According the below verification, these solutions are 
completely reliable

7.1 LU decomposition method
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The EndThe End
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